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ABSTRACT 

Domain walls arising in a cosmic phase transition after decoupling vere recently 
proposed as seeds for the formation of large scale structure. The distortion 
induced in the microwave background radiation is calculated in dependence of 
the vml.l thickness. surface density, scalar field potential. cosmic redshift and 
the velocity of the mall. We find that the maximal redshift distortion for both 
spherical and planar walls is of the order RGoH;,‘, where o is the surface energy 
density and H,’ the Hubble parameter. We also find that, for a wall thickness 
smaller than the horizon, walls can be treated as Snirely thin, i.e. the redshift 
distortion is independent of the wall thickness and the specific form of the scalar 
potential. For planar walls moving with a Lorentz-factor y the redshift distortion 
is enhanced by y3. 
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1. Introduction 

As a product of a phase transition in the universe domain walls, like other 
topological defects as strings, monopols and textures, can play an important role 
in the process of structure formation. Domain walls produced during a GUT 
phase transition were shown to have disastrous consequences because their en- 
ergy density would soon have dominated the matter content of the universe’ 

However, recently Hill, Schramm and Fry2 proposed a new scenario of struc- 
ture formation in which light domain walls created after recombination, could 
seed galaxies without leading to such unacceptable consequences as the GUT 
wall scenario. Also, since the domain walls are formed after recombination it is 
expected that the induced fluctuations in the microwave background are smaller 
than in the previously proposed scenarios. 

The dynamics of a network of domain walls was simulated numerically in Ref. 
3. It was found there that closed domain walls smaller than the horizon (vacuum 
bubbles) collapse with almost the speed of light and only domain walls larger 
than the Hubble-scale are stable. The collapsing vacuum bubbles quickly become 
spherical due to their surface. tension. The bubbles larger than the horizon, for 
the sake of simplicity, will here be approtimated as in&rite planes. In previous 
estimates2 the redshift distortion for those two types of domain walls were 
6E/E z GaR where R is the thickness of the wall for bubbles or the horizon 
scale for planar walls. 

In this paper we present a detailed calculation of the redshift distortion in- 
duced by domain walls in dependence of the wall thickness, surface density, scalar 
field potential, cosmic redshift and the velocity of the walls. We End that the max- 
imal redshift distortion for both types of domain walls is of the order ?rGaH;‘: 
where Hs is the Hubble parameter, which is larger than was generally expected. 
Comparing this redshift distortion with the current upper limit on the anisotropy 
of the microwave background yields an upper limit on o of (T 2 1 Mey3, which 
can still be met by the models proposed in Ref. 2. 

In section 2 we give the general formula for the redshift distortion induced by 
the metric perturbations of domain walls in an expanding universe. This formula 
is evaluated for planar domain walls in section 3 and for spherical bubbles in 
section 4. In section 3 we analyze the dependence of the redshift distortion on 
the wall thickness, the scalar field potential, the cosmic redshift, the surface 
energy density and the velocity of the walls. 
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2. Redshift formula 

In this paragraph we set up the formalism.to evaluate the redshift distortions 
caused by domain walls. The domain walls perturb the Friedman-Robertson- 
Walker (FRW) metric and therefore lead to distortions in the redshift of photons. 
The flat background FRW metric in conformal coordinates is g,,” = a’(t)v,,” 
where T,,” = diag(l, -1, -1, -1) with a(t) = a(to)t2/ti, since we are interested 
in the epoch after recombination where the universe is matter dominated. The 
domain walls lead to perturbations h Pu < 1 of this background metric so that 
the total metric becomes CJ,,” = ~~(t)(v,,~+h~,,). To obtain the redshift distortion 
caused by the .metric perturbations, one has to calculate the redshift of photons 
in the perturbed metric CJ+” and compare it with the usual redshift reiation in an 
unperturbed FRW-universe. 

We start with the geodesic equation for a photon. which can be written as: 

dxp 1 - = - 
J 

dX agpv dx’ dsv 
gap dX 2 --- ax= dX dX 

(2.1) 

where X is the s.fEne parameter along the photon trajectory. The enero measured 
by an observer with four-velocity u” = ((~~tt)-‘/~. O,O, 0) is then 

dxP 1 
u=g”pdx = z 

dX 6’gpv ds@ dxy --_ 
i% dX dX 

(2.2) 

For a metric of the form CJ,,~ = a’(qPv i- hPY) the change in the redshift with 
respect to the background a’qvv to first order in the perturbations h,, is 

6E 
- = -;htt + ; 
E 

dt ah -Y+L,Y 
at 

(2.3) 

where the integral is evaluated along the unperturbed geodesics 

(2.4) 

with the direction cosines yJ‘, The redshift formula (2.3) agrees with the Sachs- 
Wolfe formula4 for their choice of gauge condition. 
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Since the gravitational effects of a wall are limited by the horizon at the time 
t, when the photon passes the walI we limit the range of integration in (2.3) to 

It - t,1 5 (:$)-I 

where a/&a is the cosmic expansion scale that also determines the region of 
validity of the adiabatic approximation. We then get for the lower and upper 
limits of integration in (2.3) tr = 2t,/3 and t2 = 2t,. In case that 2t, > t,-, we 
take t2 = to: 

t1 = 2t,/3 , t2 = min{ts, 2t,} (2.6) 

Formula (2.3) integrated between these limits constitutes the general redshift 
distortion formula which we will evaluate in the following paragraphs for pertur- 
bations h,, created by planar and spherical domain walls. In particular. we are 
interested in the dependence of 6E/E on the different parameters characterizing 
the wall. 

3. Thick planar walls 

In this paragraph we analyze the redshift distortion of photons in the gravita- 
tional field of thick planar walls in dependence of the scalar field potential V(Q), 
the angle 8 of the photon relative to the wall and the expansion rate H. We 
determine the metric in the weak field approximation for a scalar field with Q4- 
and sine-Gordon potentials. The expansion of the universe is taken into account 
in the adiabatic approximation. 

Planar domain wslls are scalar field configurations for which the energy den- 
sity is concentrated in a sheet-lie region and the scalar field @(t,<) attains 
different vacuum states on the different sides of the plane. In a matter domi- 
nated Friedman universe with metric g,,” = o2 qrv domain walls are described 
by solutions of the scalar field equation 

;i - a” + 2$ + a2V’(@) = 0 ) 

with the boundary condition that + tends to two different minima of the scalar 
field potential V(a) as z -+ fco. In this section we study the redshift distortion 
produced by planar domain walls for two different scalar field potentials: The 
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usual @“-potential and the sine-Gordon potential (SG) which arises from the 
particle physics models discussed in Ref. 2: 

V(@) = 

I 

CD2 2 vo I-- 
( ) Qi 

4 vo cos2 - 
( ) 2@0 

(3.2) 

with minima at @ = +~@a. The soiurions of the sca1a.r field equation (3.1) de- 
scribing a thick planar wall in the adiabatic approximation (where terms of ;1’ 
and ;i are neglected) for the two potentials are: 

Go tanh(az/b^) for a4 
qt, 2) = 

a0 for SG ’ (3.3) 

where d is the wall thickness 

Note that the wall is localized in a region jaz/ 5 6, i.e. the proper thickness of 
the wall is not affected by the expansion. To determine the metric of the wall we 
also have to know the energy-momentum tensor for the adiabatic solutions (3.3): 

T,’ =T,’ = 7yY = /, 

Tt’ = - ;:?. T,’ = IJ 
(3.5) 

where the energy density p is 

i 

2V,/ cosh”iaz/&) for a4 
P= 

2Va/ cash-(u/J) for SG 
i:3.6) 

Besides the thickness 6 the ocher quantity that characterizes the wall phenomeno- 
logically is the surface density 0, which is defined by: 

+rr 

0= 

/ i 

d(azjp = 
:a;/6 for a4 

(3.71 

-co $a;/6 for SG 

In order to calculate the metric perturbations caused by the domain wails with 
energy momentum tensor (3.5) we make the following ansatz for the perrurbed 



metric 

d.2 = a*(t) [(l + hn)dt? - (1 - h,,)dz* - (1 - hzz)(ds2 + dy’)] , (3.8) 

where the metric perturbations h,, are functions of t and L. The linearized 
Einstein tensor in the adiabatic approximation for this Ansatz is 

Gt’ =$h’:, 

Giz = - $ [“Lz - +&] 

G,’ =O 

G,’ =G,Y = -& [h;, - h:,] 

(3.9) 

Note that the Einstein equations G,, = &rGT,,, determine the solution only 
up to an arbitrary linear function of 2. Usually the solution is uniquely deter- 
mined by requiring that the h,, vanish far outside the source. Here, however, due 
to the one-dimension&y of the problem the gravitational field always diverges 
at large z. As we have shown’ static planar walls do not admit Minkowski space 
on both sides, but create a Ftindler- and Taub vacuum on the different sides of the 
wall. Demanding that the metric I) Py + h,, becomes Ftindler space at z + +w 
and Taub-space at z + --5o gives the following solution to the Einstein equations 

h,t=-I-U 

h,, = 3I 

h,, = I - J 

(3.10) 

with 

I ~ 47rGa6 [lncosh(at/6) - cash-‘(at/6)/4] for a4 

{ 4xGu6 Incosh(az/Q for SG 

J s 4nGoaz 

(3.11) 

Note that although the h,, go linear with z at large /zI, the linear approximation 
remains valid within the horizon of the universe for all relevant choices of 0. 
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With the limits of integration given in (2.6) the redshift distortion for a planar 
wall is 

(3.12) 

where the integrals have to be evaluated along the unperturbed photon path 
z = cos e(t - i.). The final expression for the redshift distortion is then 

6E 
,- = 8rGaH;’ $2 cos e + (3083 e ($3 - ir12) + 

+iSH. ilncosh[&n2(n - I)]-;co~h-~[:*q’(n - 1)1] +cos” B F, 
'I? 

(3.13) 

w 

where q s t/t. and with 

m 

Fm = 
J 

4 ~(7 - 1) [(a + 2)tmh((.r12(rl - 1)) - 01 tanh3([,$(n - l))] 

m 

Here H, = Ho(1 + z,)~/’ is the Hubble parameter at cosmic redshift (1 + 
z.)=a(to)/a(t.) and 

(3.14) 

Formula (3.13) yields the redshift distortion for the sine-Gordon potential (a = 0) 
and for the @‘-potential (o = 1). The limits of integration are nr = 2/3 and 
772 = 2 if to > 2t . and 72 = fi if to < 2t,. 

3.1 DEPENDENCE ON V(Q) 

The redshift distortion (3.13) is plotted in Fig.1 as a function of H,6 for 
cos8 = 1. (Fig. 1 holds for to > 2t,; for to < 2t, the shape is the same, onlv the 
height of the step is smaller.) It is evident from this curve that for 6 2 H;i and 
6 >> H;‘, i.e. for a wall thickness smaller and much larger than the horizon, 
the redshift distortion is completely independent from the scalar field potential 
V(a). Even for 6 x H;’ the difference in 6E/E for the two potentials is only 
about 10%. 
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3.3 DEPENDENCE ON THE WALL THICKNESS 6 

The redsbift distortion in the regions 6 2 H;’ and 6 >> H;’ is not only 
independent from the potential V(G) but also independent from the wall thick- 
ness. This is plausible because the gravitational field outside the wall becomes 
identical to the gravitational field of an infinitely thii wall. In the case that the 
wsJl thickness is much larger than the horizon, 6E/E becomes constant because 
the potential inside the wall does not vary on horizon scales. For the type of 
domain walls considered in Ref. 2 where 6 can be as large as a few Mpc and 
z* z 100 we find for instance that 6H, 2 1 which becomes 6 << H;l as the 
universe evolves. We thus see that even walls as thick as a few Mpc induce the 
same redshift distortion as thin walls. Since no models with 6 2 H;’ have been 
proposed yet, we will therefore consider only the thin wall limit, i.e. 6H. ~5 1. 

3.3 DEPENDENCE ON 0 

For 6 2 H;’ the redshift distortion (3.13) simplifies for both potentials to 

6E =fjTGaH-’ 
E l 

+cos3e (iv3 - $2)+2jcose13 J 
m drl 717 - 11 (3.15) 
71 

The angular dependence of this redshift distortion is depicted in Fig.2 As ex- 
pected 6E/E is maximal for photons moving perpendicular to the wall (/ cos 01 = 
1). The asymmetry of 6E/E with respect to a change of the direction of the pho- 
ton (cos 0 + - cos 6’) is due to the asymmetry of the metric which asymptoticaliy 
becomes Rindler and Taub space. To receive photons with cos 8 > 0 (FOP” 6’ < 0) 
the observer must be located in the Rindler space (Taub space). 

For case > 0, a photon that is emitted in the region z < 0 and crosses the 
wall at z = 0 at an angle 8, will be received by the observer at z > 0 at an angle 
8 with respect to the z-axis, see Fig. 3. Therefore, the angular distribution of 
6E/E is given by the part of the curve in Fig. 2 with 0 5 cos6’ 5 1. This is 
sketched in Fig. 3. For cos 6’ < 0 the angular dis’tribution of 6EjE is determined 
in a similar way by the part of the curve in Fig. 2 with -1 5 case < 0. In 
this csse the incident angle of the photons is = - 8. For walls at high cosmic 
redshifts (z* 2 3) the observer always sees a blueshift in both cases cos tI > 0 and 
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case < 0. The maximum value of the blueshift is 6E/E Y 6.2 x 8xGoH;’ for 
COSe = fl and 6EIE Y 1.1 x SxGoH;* for ~0~6’ = -1. For walls at low cosmic 
redshifts I. < 3 an observer on the Taub side could see a redshift 6E/E < 0. 

3.4 DEPENDENCE ON H, 

As one can see from Figs. 1 and 2 6E/E is of the order YrrGoH;’ on all 
angular scales and for all 6. For z. > 3 6E/E has a cosmic redshift dependence of 
H;’ o( (1 + z.)- 3/2 For z+ < 3 there is an additional dependence on the cosmic 
redshift introduced via the upper limit of integration 02 = to/t, = m, 
resulting in a:.decrease of 6E/E as z, + 0. Therefore domain walls at about 
i, x 3 create the largest distortion. Note that the particular value z, = 3 arises 
from our limits of integration eq. (2.6). 

3.5 MOVING WALLS 

In this section we study the redshift distortion by planar walls with nonzero 
velocities with respect to the observer. We consider the gravitational field of 
a moving wall as a perturbation of the flat background and take account of 
the expansion of the universe by identifying the spatial coordinate z with the 
comoving coordinate. That is, we use the Lorentz-boosted metric of a static wall 
in formula (2.3) and replace r(.z - vt) by a(t)$z - ut). This is an approximate 
treatment which we believe yields the correct qualitative results. The metric of 
a static wall is given by (3.10), (3.11). After a Lorentz-boost in the z-direction 
with velocity u we get for the metric of a moving wall 

da’ = a’(t) (q,, + h;“) dz’ds” (3.16) 

with 

h;t = y2 [(3v2 - 1)1- 2J] 

h& = 2vy2[I - J] 

h;, = -y’[(3 - v2)I - 2t?J] 

h:, = h& = I - J 

(3.17) 

where I and J are given by (3.10) and (3.11) with az replaced by ayjz - w!). The 
redshift distortion is again given by (2.3) where the integral is evaluated along 
the unperturbed photon path z = case (t - t.) + ut, between the limits given 
in (2.6). t. is the time when the photon passes the wail. which is then located 

9 



at z = vt.. The formula for the redshift distortion caused by a moving wall is 
(7 = t/t.) 

6E 
- =8rGaH;'y3 
E 

lcose-vl [~(1-3v2)1121rl--II+(V+cose)2 /dq 2rl~‘l-11j 

-sp(cme - v) v ccos e + v)2 J 4 r12sgn(v - 1) + (cos e - v) q2(rj - 1) 

+~[(cose+v)2 - 3(1 +vcose)2] [(case - TJ)($~ -~7~)--$ v ~7~1 
II 

” (3.18) 
VI 

with 71 = 2/3 and ~2 = min{2, m}. This formula applies for the physically 
relevant case 6 .S H;' and is shown in Fig. 4 as a function of V. For z’ = 
0 this expression reduces to formula (3.15). A salient feature of this redshift 
distortion for moving walls is a velocity dependence that goes roughly as -i3. This 
dependence is due to a y2 factor from the Lorentz-boosted energy momentum 
tensor of the wall and another 7 factor from the linear r-dependence of the 
domain wall metric. Compared to the formula (3.15) another new feature for 
moving walls is the occurance of a redshift, i.e. 6E/E < 0 for case < 0. Note 
that photons with cos0 > 0 (cos6’ < 0) csn only be received by observers in the 
region .z > 0 (z < 0). Also, for photons to actually pass the wall the following 
relations have to be satisfied: 

c0se<o : cose<v<1 

since for v = cos0 the wall and the photon have the same velocity along the 
r-axis. Fig. 4 shows that in the case cos6’ > 0 6E/E is always positive, i.e. 
photons are blueshifted, whereas for cos 8 < 0 6E/E becomes negative for large 
velocities or low cosmic redshifts z,. 
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3.6 UPPER BOUND ON o 

The observed isotropy of the microwave background imposes a constraint 
on the surface energy density o. We found that the maximal distortion of the 
microwave background occurs for photons crossing a domain wall at a cosmic 
redshift z, z 3. The magnitude of this distortion is 6E/E c 0.75 x 87rGoH;‘, 
see Fig. 2. This has to be compared with the observational upper bound on the 
temperature fluctuations6 &T/T 2 4 x 10-j (at angulsr scales s 10’). We 
therefore find for the upper bound on the surface energy density CJ ~5 0.6 MeV3. 

Numerical simulations for a network of domain walls have shown3 that the 
r.m.s. velocity!of the walls is about 0.4. Since &E/E is enhanced by a factor -y3 
for walls with u # 0 one could derive a stronger bound on CJ using the expressions 
for the redshift distortion of high-velocity walls. However, such a bound would 
only be reliable if the exact velocity distribution of the network of domain wails 
were known. 

4. Spherical walk 

We first consider the redshift distortion for photons passing outside a spher- 
ical domain wall. Then we briefly discuss the case of photons traversing through 
the bubble. A detailed analysis of the angular patterns of distortion in the mi- 
crowave background caused by collapsing spherical domain walls in Ref. T is based 
on this section. 

Due to the spherical symmetry, the gravitational field outside the bubble is 
identical to that of a point mass. Therefore the gravitational field outside the 
bubble is independent from the dynamics of the bubble. As an ansatz for the 
metric of the bubble in an expanding universe we take 

ds2 = o?(t) (1 + htt)dt’ - (1 - h,,)dr2 - r2 df12 1 (4.1) 

The linearized vacuum Einstein equations in the adiabatic approximation (terms 
with es, ii are neglected) are : 

h:,r + h,, = 0 

h;,r + h,, = 0 

a htq - ah.,, = 0 

(4.2) 
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The solution of these equations is 

2GM 
hti = hlr = -- 

ar (4.3) 

where M is the mass of the bubble. This solution has to be inserted into the gen- 
eral redshift formula (2.3). The integral is then evaluated along the unperturbed 
photon path r(t) = (t - tt)2 + rz where t. is the time when the photon passes 
the bubble at a distance r.. With the same limits of integration as in section 2, 
tl = 2t,/3, t2 = min{Zt,,to}, and with the abbreviations fi = r,/t,, 7) E t/t* we 
obtain: 

2 = 2GMH 
E 

l 

p4-1oP+4 asi* 
4(@2 + 1)7/Z 

+~3(7/3~-8)+~2(12-17~2+~4)-~(~+~2)(2-3~2)-(1+B2)2 

4172( 1 + pq3 [P’ + (7 - 1j21 1/Z 
m (4.4) 

7, 
p is the ratio of the proper distance I, = u(t*)r, corresponding to rt and the 
horizon size 2H;’ : 2p = I,H,. In Fig. 5 we give the redshift distortion (4.4) 
for a photon passing outside a bubble as a function of l,H,. As expected, for 
1 . x H;’ , i.e. for an impact parameter of the order of the horizon, the photon is 
not affected by the gravitational field of the bubble, so that 6E/E vanishes. For 
I, < H;’ 6E/E shows a logarithmic dependence which can be obtained from 
(4.4) in the limit p -t 0 : 

6E 
- = 4GMH, 
E 

ln(2/(LH.)) - g} [for ,8 -+ 0) 

Note that i. is always larger than the Schwarzschild radius 72 = 2GM which 
means that there is a maximal value of 6E/E. The result (4.5) can also be de- 
rived by a qualitative analysis similar to the one used by Rees and Sciama’ for 
the redshift distortion created by density inhomogeneities separating out’from the 
Hubble expansion. The dominant effects contributing to the redshift distortion of 
a photon passing a point mass are the time delay caused by the gravitational po 
tential and the change of the gravitational field due to the background expansion. 
The time delay for a photon in the potential of a point mass is 

t. 

At Y 2 
I 

dr(1 - ?)-I - 2t, = 4GMln(2/(l.H,)) 

r. 

yielding a contribution to the redshift 6EI.E = H,lt which is exactly the first 
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term in (4.5). The contribution due to the change of the gravitational field is 

r -;htt/2t- = 
a./3 

--kGMH,( i) 

This approximates the second term in (4.5). The blueshift from the time delay 
always exceeds the redshift from the changing gravitational field so that the 
photon achieves a net gain of energy. 

Photons that traverse the collapsing bubble experience no gravitationai field 
while they are inside the bubble. Before entering and after leaving the bubble they 
see a Schwarzschild field (4.3). The main contribution to the red&it distortion 
for these photons comes from the difference in the gravitational potential when 
they enter andieave the bubble. Since the bubble collapses the photon leaves the 
bubble at a radius rOUt which is much smaller than the radius when the photon 
enters the bubble. The redshift distortion is therefore approximately 

6E 
- v=z -ihit 
E 

z -GN,/(a(t,,&-,,t) (4.6) 

This leads to red spikes in the microwave background whereas the photon that 
passes only outside the bubble at larger impact parameters r, receives a blueshift, 
as was shown above. The overall pattern of redshift distortion produced by 
collapsing spherical domain walls consists therefore of red spikes surrounded by 
blue discs. 

So far, we implicitly assumed that the final state of the bubble collapse is 
a black hole. There is, however, the possibility that the bubble evaporates into 
Cbosons as it shrinks to a radius equal to the inverse boson mass’ Since the 
emitted bosons form an expanding shell with vanishing gravitational field inside 
and Schwarzschild field outside, the pattern of the redshift distortion is a blue 
spike surrounded by a blue disc, analogous to the case of the collapsing bubble 
discussed above. This pattern was analyzed in detail in Ref. 7. The red and blue 
spikes surrounded by blue discs form a characteristic redshift pattern that can 
serve as an unambiguous indicator for collapsing domain walls. This is because 
the width and the height of a spike is related to the diameter and magnitude of 
the surrounding blue disc’ The largest redshift distortion in discs occurs for 
low cosmic redshifts since the mass of a bubble that begins to collapse at about 
t3/2 is given by A4 = 4?rG0H{‘/l6: 

SE 

-F,& 
= 7;GcsH;l (4.7) 

The largest redshift distortion in spikes eq. (4.6) occurs for small rOUt, i.e. the 
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collapsing bubble must be close to our past light cone: 

6E xGaH;’ 

- +eM 410Ut 
(4.3) 

with lout = a(t,,t)r,,t. Spikes produce the largest signals, 6E/Elspike > 6E/EjdiSc 
for 

LutHw < HOI , (4.9) 

i.e. spikes at large cosmic redshifts exceed the discs at low cosmic redshifts if 
the radius I,,,, is much smaller than the horizon. One therefore expects that the 
number of spikes of this magnitude is only a small fraction of the total number of 
spikes. The total number of spikes is readily obtained by integrating the number 
density of collapsing bubbles3 dN/(dt, d%,) = tc4 over a horizon volume around 
our past light cone, i.e. I(to - t,) - r*j 5 t, and tls < t. < to, where tls is the 
epoch of the last scattering of the MBR-photons. One fmds iNtot 2 4ir(l + 21,). 
The number of spikes exceeding the blue discs at low redshift is much smaller 
than Nt,t since they occur only if a bubble collapses very close to our past light 
cone: I(to -t,) -r,I 5 rOUt 5 tt/(Bti), see eq. (4.9). In this case one finds 
dN/dt, = x(to - t,)2/ti which gives N Y 1, showing that those spikes are very 
rare. The resulting redshift pattern in the MBR sky produced by collapsing 
domain walls therefore is dominated by a few blue discs of amplitude (4.7). At 
smaller values of bE/E a characteristic pattern of blue and red spikes surrounded 
by blue discs appears that can be an unique signal from collapsing domain walls. 

5. summary 

We have analyzed the redshift distortion by planar and spherical domain 
walls. For both of these topologically different configurations we found that 
6E/E is generally of the order xGaH; I. Therefore, domain walls at lower cosmic 
redshifts create the largest distortions. Also, hE/E is independent of the wall 
thickness 6 and the form of the scalar field potential V(a) if 6 is smaller than 
the horizon at the time when the photon passes the wall. The angular pattern of 
the redshift distortion imprinted on the MBR sky was outlined in sections 3 and 
4 for planar and spherical walls. The most prominent distortions occur on scales 
that are currently measured by the COBE-satellite. COBE can detect redshift 
distortions that would arise from models with cr smaller than the upper bound 
derived in this paper, CI s 1 MeV3. An example for such a model is the late time 
phase transition scenario by Hill, Schramm and Fry’ 
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FIGURE CAPTIONS 

1. Redshift distortion caused by a planar wall as a function of 6H, for the two 
scalar field potentials. 

2. Redshift distortion caused by a planar wall as a function of the angle B for 
different cosmic redshifts z*. 

3. Sketch of the angular patten of the redshift distortion caused by a planar 
Wall. 

4. Redshift ,&stortion ILS a function of the velocity 2, of a planar wall for dif- 
ferent angles 6’: (a) .z* 2 3, (b) z, = 0.5. 

5. Redshift distortion as a function of the impact parameter 9 for a photon 
passing outside a spherical wall. 
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